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Abstract. In this work we have proposed an iterative method for direct determination of relaxation
parameters from low-energy electron diffraction (LEED) intensity patterns. The algorithm is based
on the layer-doubling method. It is shown that, with some realistic constraints, the relaxation
parameter for a single relaxed structure can be obtained, and this solution can be utilized to determine
the two-layer relaxed structure iteratively. With simulated intensity patterns for a one-dimensional
model, the method is found to work well.

1. Introduction

To date, the majority of surface structures have been determined through low-energy electron
diffraction (LEED) experiments [1]. The large scattering cross-sections for low-energy
electrons make LEED an ideal surface-sensitive probe but, due to this large scattering cross-
section, multiple scattering dominates and LEED pattern analysis becomes a really difficult
task.

In the conventional method of LEED pattern analysis, the structure is determined from the
optimal match of the experimental and computed intensity patterns among a large number of
plausible structures. This process of finding surface structures requires for complex systems
an enormous amount of computer time for calculation of the intensity patterns for many points
of the probable parameter space and for comparing with experimental intensities through
calculation ofR-factors.

Various attempts have been made to reduce the computational time required to generateI–
V curves for a given structure through perturbative approaches. These approaches—e.g. the
renormalized forward-scattering (RFS) [2], reverse-scattering perturbation (RSP) [3], beam
set neglect (BSN) [4] and tensor LEED [5] methods—have been applied to different systems
with certain required characteristics with varying degrees of success. In particular, a drastic
reduction of computer time in the calculation ofI–V curves in the TLEED method made
it possible to determine the structures of a large number of complex structures which are
almost impossible to obtain from conventional full dynamical calculations [6]. Cerdaet al [7]
developed a fast algorithm based on the combination of the first-order perturbation in RFS and
a search in parameter space with simulated annealing to determine the relaxation of up to eight
layers.

These trial-and-search techniques have had a tremendous impact on the determination of
surface structures for a large number of materials. In spite of all of the successes, however,
a structure determined by a trial-and-search method can never be claimed to be definitely the
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actual structure, but it may be the most probable one. A direct method for determination of
surface structure based on TLEED was put forward by Pendryet al [8] and shown to work for
many surfaces if the initial reference structure is very close to the real one.

Also, there is holographic LEED which records the intensity as well as the phases of
the diffraction patterns. Inversion of these data complemented by TLEED for fine tuning
determined the complex structure of SiC very accurately. But the applicability of this elegant
method is still limited to systems with large enough unit cells and one prominent atom acting
as a beam splitter [9].

In this work, we attempt to determine surface structural parameters directly from the
LEED intensity patterns for a class of possible structures, on the basis of the formalism of the
layer-doubling method. The motivation of this work came from the success of conventional
techniques of LEED pattern analysis, including that for multiple scattering. In the method,
a crystal surface is considered to be the result of a stacking of parallel atomic planes. We
show here that in the one-dimensional case the relaxation parameter for a single-relaxed-
overlayer structure can be determined from intensity patterns alone. For the two-relaxed-
overlayer structure, which includes an intermediate relaxed layer in between the top layer and
the periodic substrate, an iterative method can be adopted to retrieve the surface structural
parameters correctly.

In the next section we describe the basic framework and the strategies for retrieving the
relaxation parameters. In section 3 we present the outcome of this algorithm as applied to
some simulated experimental parameters. In the final section we discuss the significance of
the results and the formalism.

2. Theory

A surface structure is considered to consist of a stack of atomic layers parallel to the surface.
In standard LEED intensity calculations, firstly intralayer multiple scattering is taken into
account in calculating the reflection and transmission coefficients for each layer, and thereafter
interlayer scattering is considered. The two-dimensional periodicity of each layer results in
a set of reflected and transmitted beams and gives rise to energy-dependent reflection and
transmission coefficients for them. We consider here single-beam complex reflection and
transmission coefficients for the layer,r andt respectively, for simplicity, so it is effectively a
one-dimensional model.

Let the complex reflection coefficient of a regular periodic surface beRS and that of the
overall structure beRL for the single-relaxed-overlayer structure. Then, in the layer-doubling
formalism [3]

RL = r +
RSt

2eik 2d12

1− rRSeik 2d12
(1)

whered12 is the distance between the top layer and the next andk is the wave vector of the
incident electron.RS can be computed from the known interplanar distance of the bulk using
equation (1) repeatedly, by the layer-doubling method.

Equation (1) which gives the complex reflection coefficient is essentially two equations,
one for the magnitude|RL| and another for the argument ofRL. We can recast the equation in
the form

RL = r(1 + rRS(t2/r2 − 1)eik 2d12)

1− rRSeik 2d12
(2)

to calculate the magnitude. Taking absolute values of the two sides of equation (2) and after
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some cumbersome algebra, we obtain

cos(2kd12 + φ + θ) = |RL|
2(1 + |RS |2|r|2)− |r|2(1 + |RS |2|r|2||t2/r2 − 1|2)

2|RS ||r|A (3)

where
A sinθ = |t2 − r2| sinζ φ = arg(RS) + arg(r)
A cosθ = |RL|2 + |t2 − r2| cosζ ζ = arg(t2/r2 − 1).

The phases ofRL do not appear in equation (3). We here apply the constraints of intensity
matching for the system and the matching of the complex reflection coefficient of the substrate
deep inside the bulk. Therefore, from the known information and the value of the intensity, the
right-hand side of equation (3) can be evaluated. Hence the value ofd12 can be determined.
For a fixed value of the right-hand side of equation (3), two angles,α and 2π − α, satisfy
the equation. With the physical restriction thatd12 is close to the bulk interplanar distancea,
four possible values can be obtained at each energy. Of these four possible distances, two are
contractive (d12 < a) and the other two are expansive (d12 > a). The common intersection
of the sets of four distances at different energies gives a unique value ofd12. A value ofRS
incompatible with the diffraction intensity may produce a result for the right-hand side outside
the range [−1,+1] and thus lead to imaginary values ofd12.

Now let us consider the case of a two-relaxed-overlayer structure. Here there is an
intermediate layer in between the top layer and the periodic substrate. Let the reflection
coefficient of the system with one relaxed layer over the substrate beRS1 and that for the same
system with two relaxed layers over the substrate beRL. Then the following equations hold:

RL = r +
RS1t

2eik 2d12

1− rRS1eik 2d12
(4)

RS1 = r +
RSt

2eik 2d23

1− rRSeik 2d23
(5)

whered12 is the distance between the top layer and the intermediate layer andd23 is the distance
between the intermediate layer and the substrate.

For surfaces with the two-relaxed-overlayer structure we try to apply the same principle,
that the intensity pattern should match at the top layer andd12 andd23 should be computed
using equation (4) and (5) in such a way that the reflection coefficientRS for the substrate
matches properly. It should be noted that if the phases ofRL had been available, then|RS1|
could easily have been calculated from inversion of equation (4):

RL − r
t2 − r2 + rRL

= RS1eik 2d12. (6)

Once|RS1| is known,d23 can be computed in the same way as for the single-relaxed-overlayer
surface. However, due to the non-availability of the phases ofRL, this is not a workable
algorithm.

Therefore we adopt an iterative scheme which does not require the phases ofRL. Initially
we chosed23 = a, the bulk interlayer distance, and calculatedRS1 from equation (5). So
initially, RS1 = RS . With thisRS1 and the experimental values of|RL|, we get a value ofd12

using equation (3). It should be noted here that for this value ofRS1 the computation may not
be successful for all energies. The computation will certainly be successful if the computed
value ofRS1 is very close to the actual value, i.e. ifd23 is chosen correctly andRS1 is computed
from equation (5). But here the assumption thatRS1 = RS , which initially means thatd23 = a,
gives, from equation (5),

δRS1

RS1

t2RS1

r(RS1− r)(RS1− r + t2/r)
= 2ikδd23. (7)
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In most situations,|t2/r| � |RS1− r|, and thus
δRS1

RS1
' 2ik(1− r/RS1)δd23. (8)

Therefore the value of|δRS1/RS1| is large when|RS1| is very small for the same values of
δd23. Therefore it is expected that computation failures will occur mainly in between Bragg
peaks. Also, equation (8) suggests that the possibility of computation failure at large energy is
comparatively large. The algorithm initially ignores the failures and computes a value ofd12

from the successful calculations.
Once a value ofd12 is obtained,RS1 is recalculated back. For the energy values at which

computations have failed, the value ofRS1 is interpolated from those from successful com-
putations at neighbouring energies. These values ofRS1 together with the computed value
of RS give similarly a value ford23. With this d23, the iteration is repeated untild12 andd23

converge to a limit with prescribed precision.
The iterative algorithm essentially attempts to compute the reflection coefficientsRS1 and

d12 from the intensity pattern and an assumed functionRS1. Then thisRS1 together with
RS provides a value ford23. Therefore, in this algorithm, the diffraction pattern intensity is
taken as input and real-valued relaxation parameters are iteratively set such that the complex
reflection coefficientRS for the substrate matches with that computed from the known bulk
lattice constant.

3. Results

We have tested our algorithm for four surfaces. The energy-dependent complex reflection and
transmission coefficients,r and t , for each layer were taken as those of the (00) beam for
Al(111), Cu(111), Pd(100) and Rh(111) surfaces. Theser- andt-values are computed from
the inputs of the standard phase shift and the two-dimensional bulk lattice constants for the
respective surfaces using modified versions of standard dynamical codes [3].

The intensity patterns for the above-mentioned surfaces with one and two relaxed over-
layers were computed for a good number of expansive, contractive and mixed relaxations.
These simulated intensities are considered as pseudo-experimental data. These intensity
patterns, energy-dependent complex reflection and transmission coefficients, bulk lattice
constants and bulk interplanar distances are taken as inputs.

The retrieval of a relaxation parameter for a single relaxed structure using equation (3) is
a non-iterative process. It is found that the relaxation parameter can be correctly determined
for relaxation to up to 20% variation from the bulk interplanar distance.

In table 1 we show the parameters of the surfaces used to simulate the intensity patterns,
which are considered as pseudo-experimental data for double-relaxed-layer structures. The
relaxation for typical real systems is always less than the values shown here [10].

Table 1. Typical values of parameters of surfaces for simulating intensity patterns.

Simulated parameter
values (Å)

Surfaces Bulk interplanar distance,a (Å) d12 d23

Al(111) 2.338 2.216 2.402
Cu(111) 2.087 2.146 2.103
Rh(111) 2.192 2.146 2.178
Pd(100) 1.945 2.056 2.012
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Table 2. Retrieved parameter values and PendryR-factors obtained as the iteration proceeds.

Retrieved parameter
values (Å)

Surfaces Iteration No d12 d23 PendryR-factor

Al(111) 1 2.202 2.342 2.8× 10−1

3 2.216 2.400 7.5× 10−5

10 2.216 2.402 9.2× 10−6

Cu(111) 1 2.148 2.087 1.2× 10−2

4 2.146 2.106 2.3× 10−3

Rh(111) 1 2.145 2.154 6.1× 10−4

5 2.146 2.162 9.1× 10−5

12 2.146 2.178 2.2× 10−6

Pd(100) 1 2.051 1.952 3.1× 10−1

5 2.055 2.016 1.5× 10−3

9 2.056 2.012 5.1× 10−6

In table 2 we present the results of the iterations. The initial value ofd23 was taken as the
bulk interplanar distancea. Typically, the iteration converged to an accuracy of three decimal
places in four to twelve iterations. The convergence in general depends on the natures of the
reflection coefficientsr and transmission coefficientst of the layers. The number of iterations
increases for systems having coefficientsr and t exhibiting large numbers of maxima and
minima. PendryR-factors obtained as the iteration proceeds are shown for some parameter
values. It is seen that in most cases theR-factors improve by five orders of magnitude and the
retrieved values of the parameters agree well with the actual parameter values.

4. Discussion

In contrast to the trial-and-search method of conventional LEED analysis, our algorithm starts
from an experimental intensity pattern in order to determine the relaxation parameters directly,
imposing the constraint of matching of the intensity pattern for the whole system and the
complex reflection coefficient of the bulk-terminated surface at the same time. Our results
for an effectively one-dimensional structure show that the solution is straightforward for a
single-relaxed-overlayer structure. This appears to be a multivalued function at each energy,
and a unique value is resolved from the energy-dependent intensity spectra. For a two-relaxed-
overlayer structure this principle is implemented in an iterative process. The PendryR-factors
in table 2 show the progressive improvements as the iteration proceeds. It may be noted that
computation ofR-factors is not necessary at any step of the iteration, as convergency is checked
through the recalculation of values of the relaxation parameters. There is scope for making a
better choice of the initial values of the relaxation parameters to achieve faster convergence.
Also, external convergence-acceleration techniques can be applied.

In the three-dimensional model, the equations for the complex reflection coefficients are
similar to equation (1), but now in a matrix form. So the same strategy can be applied for
the multibeam situation, and a single beam cannot be treated in isolation. The stepping stone
of this algorithm is the solution for a single-relaxed-overlayer structure (equation (3)) in the
one-dimensional model. In principle, a solution can also be obtained in three dimensions;
at worst, the solution may have to be obtained numerically. Work in this direction on direct
determination of real surface structure is in progress. Also, the perturbative approach of tensor
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LEED may be applied, with this algorithm reducing the computational time.
In conclusion, we have shown that a one-dimensional model LEED intensity pattern

together with information on the chemical composition of surfaces and bulk structure can be
used effectively to determine the surface relaxation parameters in an iterative method. As this
method does not search in parameter space, the solution obtained can be confidently considered
to be the actual structure.
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